Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Chem Neurosci ; 15(5): 955-971, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38372253

RESUMO

Alzheimer's disease (AD) is a neurodegenerative form of dementia characterized by the loss of synapses and a progressive decline in cognitive abilities. Among current treatments for AD, acetylcholinesterase (AChE) inhibitors have efficacy limited to symptom relief, with significant side effects and poor compliance. Pharmacological agents that modulate the activity of type-2 cannabinoid receptors (CB2R) of the endocannabinoid system by activating or blocking them have also been shown to be effective against neuroinflammation. Herein, we describe the design, synthesis, and pharmacological effects in vitro and in vivo of dual-acting compounds that inhibit AChE and butyrylcholinesterase (BChE) and target CB2R. Within the investigated series, compound 4g proved to be the most promising. It achieved IC50 values in the low micromolar to submicromolar range against both human cholinesterase isoforms while antagonizing CB2R with Ki of 31 nM. Interestingly, 4g showed neuroprotective effects on the SH-SY5Y cell line thanks to its ability to prevent oxidative stress-induced cell toxicity and reverse scopolamine-induced amnesia in the Y-maze forced alternation test in vivo.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Neuroblastoma , Fármacos Neuroprotetores , Humanos , Butirilcolinesterase/metabolismo , Acetilcolinesterase/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Receptores de Canabinoides , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/uso terapêutico , Doença de Alzheimer/metabolismo , Disfunção Cognitiva/tratamento farmacológico , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade
2.
Int J Mol Sci ; 24(18)2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37762339

RESUMO

Memory deficit is one of the major negative outcomes of chronic stress. Cholinergic system modulates memory not only through the neuronal cells, but also via interactions with non-neuronal cells, suggesting that microglia can influence synaptic function and plasticity, contributing to cognition and memory function. Withania somnifera (L.) Dunal (WS) and Bacopa monnieri (L.) Wettst (BM), are traditional herbal medicinal products used for the temporary relief of symptoms of stress. The aim of this study was to investigate whether choline (CLN) activity could be enhanced via an association with adaptogens: WS and BM extracts. First, we optimized an in vitro model of corticotropin-releasing hormone (CRH)-induced oxidative stress on microglial BV2 cells. CRH 100 nM reduced BV2 cell viability and induced morphological changes and neurotoxicity after 24 h of microglia stimulation. Moreover, it induced an increase in the production of reactive oxygen species (ROS) and dysregulated antioxidant protein (i.e., SIRT-1 and NRF-2). The association between choline and adaptogens (CBW) 10 µg/mL counteracted the effect of CRH on BV2 cells and reduced the neurotoxicity produced by BV2 CRH-conditioned medium in the SH-SY5Y cell lines. CBW 200 mg/kg produced an ameliorative effect on recognition memory in the novel object recognition test (NORT) test in mice. In conclusion, combining choline with adaptogen plant extracts might represent a promising intervention in chronic stress associated with memory disturbances through the attenuation of microglia-induced oxidative stress.


Assuntos
Bacopa , Neuroblastoma , Síndromes Neurotóxicas , Withania , Humanos , Animais , Camundongos , Neuroproteção , Microglia , Estresse Oxidativo , Colina , Hormônio Liberador da Corticotropina
3.
Antioxidants (Basel) ; 12(8)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37627513

RESUMO

Neuropathic pain (NP) affects about 8% of the general population. Current analgesic therapies have limited efficacy, making NP one of the most difficult to treat pain conditions. Evidence indicates that excessive oxidative stress can contribute to the onset of chronic NP and several natural antioxidant compounds have shown promising efficacy in NP models. Thus, this study aimed to investigate the pain-relieving activity of honokiol (HNK)-rich standardized extract of Magnolia officinalis Rehder & E. Wilson bark (MOE), well known for its antioxidant and anti-inflammatory properties, in the spared nerve injury (SNI) model. The molecular mechanisms and efficacy toward neuroinflammation were investigated in spinal cord samples from SNI mice and LPS-stimulated BV2 microglia cells. MOE and HNK showed antioxidant activity. MOE (30 mg/kg p.o.) produced an antiallodynic effect in SNI mice in the absence of locomotor impairment, reduced spinal p-p38, p-JNK1, iNOS, p-p65, IL-1ß, and Nrf2 overexpression, increased IL-10 and MBP levels and attenuated the Notch signaling pathway by reducing Jagged1 and NEXT. These effects were prevented by the CB1 antagonist AM251. HNK reduced the proinflammatory response of LPS-stimulated BV2 and reduced Jagged1 overexpression. MOE and HNK, by modulating oxidative and proinflammatory responses, might represent interesting candidates for NP management.

4.
Phytother Res ; 37(10): 4304-4320, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37433745

RESUMO

The prevalence of obesity is steadily rising, making safe and more efficient anti-obesity treatments an urgent medical need. Growing evidence correlates obesity and comorbidities, including anxiety and depression, with the development of a low-grade inflammation in peripheral and central tissues. We hypothesized that attenuating neuroinflammation might reduce weight gain and improve mood. We investigated the efficacy of a methanolic extract from Helichrysum stoechas (L.) Moench (HSE), well-known for its anti-inflammatory properties, and its main constituent arzanol (AZL). HPLC-ESI-MS2 and HPLC-UV were used to characterize the extract. HSE effects on mood and feeding behavior was assessed in mice. The mechanism of action of HSE and AZL was investigated in hippocampus samples and SH-SY5Y cells by western blotting and immunofluorescence. Oral administration of HSE for 3 weeks limited weight gain with no significant decrease in food intake. HSE produced an anxiolytic-like and antidepressant-like phenotype comparable to diazepam and amitriptyline, respectively, in the absence of locomotor and cognitive impairments and induced neuroprotective effects in glutamate-exposed SH-SY5Y cells. A dose-dependent reduction of SIRT1 expression was detected in SH-SY5Y cells and in hippocampal samples from HSE-treated mice. The inhibition of the SIRT1-FoxO1 pathway was induced in the hypothalamus. Molecular docking studies proposed a mechanism of SIRT1 inhibition by AZL, confirmed by the evaluation of inhibitory effects on SIRT1 enzymatic activity. HSE limited weight gain and comorbidities through an AZL-mediated SIRT1 inhibition. These activities indicate HSE an innovative therapeutic perspective for obesity and associated mood disorders.

5.
Biomedicines ; 11(6)2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37371642

RESUMO

Neuropathic pain is a chronic disabling condition with a 7-10% of prevalence in the general population that is largely undertreated. Available analgesic therapies are poorly effective and are often accompanied by numerous side effects. Growing evidence indicates cannabinoids are a valuable treatment opportunity for neuropathic pain. The endocannabinoid system is an important regulator of pain perception through the CB1 receptors, but CB1 agonists, while largely effective, are not always satisfactory pain-relieving agents in clinics because of their serious adverse effects. Recently, several CB2 agonists have shown analgesic, anti-hyperalgesic, and anti-allodynic activity in the absence of CB1-induced psychostimulant effects, offering promise in neuropathic pain management. The aim of this study was to evaluate the anti-neuropathic activity of a novel selective CB2 agonist, COR167, in a preclinical model of peripheral neuropathy, the spared nerve injury (SNI). Oral COR167, in a dose-dependent manner, attenuated mechanical allodynia and thermal hyperalgesia after acute and repeated administration, showing the absence of tolerance induction. At anti-neuropathic doses, COR167 did not show any alteration in the locomotor behavior. SNI mice showed increased microglial levels of HDAC1 protein in the ipsilateral side of the spinal cord, along with NF-kB activation. COR167 treatment prevented the HDAC1 overexpression and the NF-kB activation and increased the levels of the anti-inflammatory cytokine IL-10 through a CB2-mediated mechanism. Oral administration of COR167 shows promising therapeutic potential in the management of neuropathic pain conditions.

6.
Br J Pharmacol ; 180(18): 2377-2392, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37050867

RESUMO

BACKGROUND AND PURPOSE: Chronic pain is considered a key factor contributing to alcohol use disorder (AUD). The mechanisms responsible for chronic pain associated with chronic alcohol consumption are unknown. We evaluated the development of chronic pain in a mouse model of alcohol dependence and investigate the role of neuroinflammation. EXPERIMENTAL APPROACH: The chronic-intermittent ethanol two-bottle choice CIE-2BC paradigm generates three groups: alcohol-dependent with escalating alcohol intake, nondependent (moderate drinking) and alcohol-naïve control male and female mice. We measured mechanical allodynia during withdrawal and after the last voluntary drinking. Immunoblotting was used to evaluate the protein levels of IBA-1, CSFR, IL-6, p38 and ERK2/1 in spinal cord tissue of dependent and non-dependent animals. KEY RESULTS: We found significant escalation of drinking in the dependent group in male and female compared with the non-dependent group. The dependent group developed mechanical allodynia during 72 h of withdrawal, which was completely reversed after voluntary drinking. We observed an increased pain hypersensitivity compared with the naïve in 50% of non-dependent group. Increased IBA-1 and CSFR expression was observed in spinal cord tissue of both hypersensitivity-abstinence related and neuropathy-alcohol mice, and increased IL-6 expression and ERK1/2 activation in mice with hypersensitivity-related to abstinence, but not in mice with alcohol-evoked neuropathic pain. CONCLUSIONS AND IMPLICATIONS: The CIE-2BC model induces two distinct pain conditions specific to the type of ethanol exposure: abstinence-related hypersensitivity in dependent mice and alcohol-evoked neuropathic pain in about a half of the non-dependent mice.


Assuntos
Neuralgia , Doenças Neuroinflamatórias , Doenças Neuroinflamatórias/induzido quimicamente , Doenças Neuroinflamatórias/metabolismo , Etanol/toxicidade , Modelos Animais de Doenças , Neuralgia/induzido quimicamente , Neuralgia/metabolismo , Dor Crônica/induzido quimicamente , Dor Crônica/metabolismo , Camundongos Endogâmicos C57BL , Masculino , Feminino , Animais , Camundongos , Comportamento Animal
7.
Biology (Basel) ; 12(3)2023 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-36979130

RESUMO

Aging is related to a low-grade and sterile inflammation called inflammaging, recognized as the main risk factor for age-related disease (ARD) development. Inflammaging is fostered by the repeated activation of immune cells, as well as by the accumulation of senescent cells. Recently, a number of natural compounds have gained attention to be tested as anti-aging therapies, based on their anti-inflammatory activity and/or ability to reduce the pro-inflammatory secretome of senescent cells (senomorphyc activity). Here, we investigated the anti-inflammatory and senomorphic properties of an Asian-native Zingiber officinale Roscoe extract (ZOE), commonly consumed as a food spice and herbal medicine. We employed two models of primary endothelial cells (HUVECs), such as the replicative-senescence and LPS-induced response, to investigate the anti-inflammatory/senomorphic effect of ZOE, and one cellular model of neuroinflammation, i.e., immortalized murine microglial cells (BV2). First, we found that the ZOE treatment induced the inhibition of NF-kB activation in BV2 cells. Among the constituents of ZOE, we showed that the terpenoid-enriched fraction (ZTE) was the component able to counteract the phosphorylation of NF-kB(p65), while 6-gingerol (GIN) and 6-shogaol (SHO) did not produce any significant effect. Further, we observed that the treatment with 10 µg/mL of ZOE exerted anti-inflammatory activity on LPS-stimulated young (y)HUVEC and senomorphyc activity on replicative senescent (s)HUVEC, significantly reducing the expression levels of IL-1ß, TNF -α, IL-8, MCP-1, and ICAM-1. Moreover, the ZTE treatment was able to significantly reduce the IL-8 levels secreted in the medium of both LPS-stimulated yHUVEC and sHUVEC. Overall, our data suggest a potential protective role of ZOE on neuroinflammation and endothelial inflammation/activation, thus suggesting its potential relevance in delaying/postponing ARD development and progression, characterized by endothelial dysfunction.

8.
Mol Neurobiol ; 60(5): 2661-2677, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36696009

RESUMO

Neuropathic pain is the most difficult-to-treat pain syndrome in multiple sclerosis. Evidence relates neuropathic pain to demyelination, which often originates from unresolved neuroinflammation or altered immune response. Posttranscriptional regulation of gene expression might play a fundamental role in the regulation of these processes. The ELAV RNA-binding proteins HuR and HuD are involved in the promotion of inflammatory phenomena and in neuronal development and maintenance, respectively. Thus, the aim of this study was to investigate the role of HuR and HuD in demyelination-associated neuropathic pain in the mouse experimental autoimmune encephalomyelitis (EAE) model. HuR resulted overexpressed in the spinal cord of MOG35-55-EAE and PLP139-151-EAE mice and was detected in CD11b + cells. Conversely, HuD was largely downregulated in the MOG-EAE spinal cord, along with GAP43 and neurofilament H, while in PLP-EAE mice, HuD and neuronal markers remained unaltered. Intranasal antisense oligonucleotide (ASO) delivery to knockdown HuR, increased myelin basic protein expression, and Luxol Fast Blue staining in both EAE models, an indication of increased myelin content. These effects temporally coincided with attenuation of pain hypersensitivity. Anti-HuR ASO increased the expression of HuD in GAP43-expressing cells and promoted a HuD-mediated neuroprotective activity in MOG-EAE mice, while in PLP-EAE mice, HuR silencing dampened pro-inflammatory responses mediated by spinal microglia activation. In conclusion, anti-HuR ASO showed myelin protection at analgesic doses with multitarget mechanisms, and it deserves further consideration as an innovative agent to counteract demyelination in neuropathic pain states.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Neuralgia , Animais , Camundongos , Modelos Animais de Doenças , Proteínas ELAV/metabolismo , Encefalomielite Autoimune Experimental/tratamento farmacológico , Regulação da Expressão Gênica , Camundongos Endogâmicos C57BL , Esclerose Múltipla/tratamento farmacológico , Bainha de Mielina/metabolismo , Neuralgia/genética , Neuralgia/metabolismo , Medula Espinal/metabolismo
9.
Phytomedicine ; 111: 154670, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36681053

RESUMO

BACKGROUND: Even though numerous Histone deacetylase inhibitors (HDACi) have been approved for the treatment of different types of cancer, and others are in clinical trials for the treatment of neurodegenerative diseases, the main problem related to the clinical use of available HDACi is their low isoform selectivity which causes undesirable effects and inevitably limits their therapeutic application. Previously, we demonstrated that a standardized Zingiber officinalis Roscoe rhizome extract (ZOE) reduced neuroinflammation through HDAC1 inhibition in a mice model of neuropathy, and this activity was related to terpenes fraction. HYPOTHESIS/PURPOSE: The aim of this work was to identify the ZOE constituent responsible for the activity on HDAC1 and to study its possible application in trauma-induced neuropathic pain. METHODS: The ability of ZOE and its terpenes fraction (ZTE) to inhibit HDAC and SIRT isoforms activity and protein expression was assessed in vitro. Then, a structure-based virtual screening approach was applied to predict which constituent could be responsible for the activity. In the next step, the activity of selected compound was tested in an in vitro model of neuroinflammation and in an in vivo model of peripheral neuropathy (SNI). RESULTS: ZTE resulted to be more potent than ZOE on HDAC1, 2, and 6 isoforms, while ZOE was more active on HDAC8. Zingiberene (ZNG) was found to be the most promising HDAC1 inhibitor, with an IC50 of 2.3 ± 0.1 µM. A non-zinc-binding mechanism of inhibition was proposed based on molecular docking. Moreover, the oral administration of ZNG reduced thermal hyperalgesia and mechanical allodynia in animals with neuropathy after 60 min from administration, and decreased HDAC-1 levels in the spinal cord microglia. CONCLUSION: We found a new non-zinc-dependent inhibitor of HDAC class I, with a therapeutic application in trauma-related neuropathic pain forms in which microglia-spinal overexpression of HDAC1 occurs. The non-zinc-binding mechanism has the potential to reduce off target effects, leading to a higher selectivity and better safety profile, compared to other HDAC inhibitors.


Assuntos
Inibidores de Histona Desacetilases , Neuralgia , Camundongos , Animais , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Simulação de Acoplamento Molecular , Doenças Neuroinflamatórias , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Hiperalgesia/tratamento farmacológico , Isoformas de Proteínas/uso terapêutico
10.
Phytother Res ; 37(5): 1924-1937, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36583304

RESUMO

Neuropathic pain (NP) is a chronic disease that affects the normal quality of life of patients. To date, the therapies available are only symptomatic and they are unable to reduce the progression of the disease. Many studies reported the efficacy of Cannabis sativa L. (C. sativa) on NP, but no Δ9 -tetrahydrocannabinol (Δ9 -THC)-free extracts have been investigated in detail for this activity so far. The principal aim of this work is to investigate the potential pain-relieving effect of innovative cannabidiol-rich non-psychotropic C. sativa oils, with a high content of terpenes (K2), compared to the same extract devoid of terpenes (K1). Oral administration of K2 (25 mg kg-1 ) induced a rapid and long-lasting relief of pain hypersensitivity in a mice model of peripheral neuropathy. In spinal cord samples, K2 reduced mitogen-activated protein kinase (MAPKs) levels and neuroinflammatory factors. These effects were reverted by the administration of a CB2 antagonist (AM630), but not by a CB1 antagonist (AM251). Conversely, K1 showed a lower efficacy in the absence of CB1/CB2-mediated mechanisms. In LPS-stimulated murine microglial cells (BV2), K2 reduced microglia pro-inflammatory phenotype through the downregulation of histone deacetylase 1 (HDAC-1) and nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor (IKBα) and increased interleukin-10 (IL-10) expression, an important antiinflammatory cytokine. In conclusion, these results suggested that K2 oral administration attenuated NP symptoms by reducing spinal neuroinflammation and underline the important role of the synergism between cannabinoids and terpenes.


Assuntos
Canabidiol , Cannabis , Neuralgia , Receptor CB2 de Canabinoide , Animais , Camundongos , Canabidiol/farmacologia , Cannabis/química , Microglia , Neuralgia/tratamento farmacológico , Doenças Neuroinflamatórias , Óleos , Qualidade de Vida , Receptor CB2 de Canabinoide/efeitos dos fármacos , Receptor CB2 de Canabinoide/metabolismo
11.
Pain ; 164(5): 1106-1117, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36448971

RESUMO

ABSTRACT: The increased presence of senescent cells in different neurological diseases suggests the contribution of senescence in the pathophysiology of neurodegenerative disorders. Microglia can adapt to any type of disturbance of the homeostasis of the central nervous system, and its altered activity can lead to permanent and unresolvable damage. The aim of this work was to characterize the behavioural phenotype of spared nerve injury mice and then associate it with senescence-related mechanisms. In this work, we investigated the timing of the onset of anxiety, depression, or memory decline associated with peripheral neuropathic pain and their correlation with the presence of microglial cellular senescence. Spared nerve injury mice showed a persistent pain hypersensitivity from 3 days after surgery. Twenty-eight days after nerve injury, they also developed anxiety, depression, and cognitive impairment. The appearance of these symptoms was coincident to a significant increase of senescence markers, such as ß-galactosidase and senescent-associated secretory phenotype, at the microglial level in the spinal cord and hippocampus of spared nerve injury animals. These markers were unaltered at previous time points. In murine immortalized microglial cells (BV2) stimulated with LPS 500 ng/mL for 10 days (4 hours/day) every other day, we observed an increase of ß-galactosidase and senescent-associated secretory phenotype appearance, a reduction of cell viability, and an increase of senescence-associated heterochromatin foci. Therefore, present findings could represent an important step to a better understanding of the pathophysiological cellular mechanisms in comorbidities related to neuropathic pain states.


Assuntos
Neuralgia , Traumatismos dos Nervos Periféricos , Camundongos , Animais , Microglia/fisiologia , Traumatismos dos Nervos Periféricos/complicações , Medula Espinal , beta-Galactosidase
12.
Int J Mol Sci ; 23(22)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36430790

RESUMO

Growing evidence points to the histamine system as a promising target for the management of neuropathic pain. Preclinical studies reported the efficacy of H3R antagonists in reducing pain hypersensitivity in models of neuropathic pain through an increase of histamine release within the CNS. Recently, a promising efficacy of H4R agonists as anti-neuropathic agents has been postulated. Since H3R and H4R are both localized in neuronal areas devoted to pain processing, the aim of the study is to investigate the role of H4R in the mechanism of anti-hyperalgesic action of the H3R antagonist GSK189254 in the spared nerve injury (SNI) model in mice. Oral (6 mg/kg), intrathecal (6 µg/mouse), or intra locus coeruleus (LC) (10 µg/µL) administration of GSK189254 reversed mechanical and thermal allodynia in the ipsilateral side of SNI mice. This effect was completely prevented by pretreatment with the H4R antagonist JNJ 10191584 (6 µg/mouse i.t.; (10 µg/µL intraLC). Furthermore, GSK189254 was devoid of any anti-hyperalgesic effect in H4R deficient mice, compared with wild type mice. Conversely, pretreatment with JNJ 10191584 was not able to prevent the hypophagic activity of GSK189254. In conclusion, we demonstrated the selective contribution of H4R to the H3R antagonist-induced attenuation of hypernociceptive behavior in SNI mice. These results might help identify innovative therapeutic interventions for neuropathic pain.


Assuntos
Histamina , Neuralgia , Animais , Camundongos , Neuralgia/tratamento farmacológico , Receptores Histamínicos , Benzazepinas/farmacologia , Hiperalgesia/tratamento farmacológico , Antagonistas dos Receptores Histamínicos/farmacologia , Antagonistas dos Receptores Histamínicos/uso terapêutico
13.
Fitoterapia ; 163: 105315, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36179898

RESUMO

The purpose of this study was to evaluate the neuroprotective effect of a cannabidiol-enriched non-psychotropic Cannabis sativa L. extract (CSE) and its main constituents, cannabidiol and ß-caryophyllene. An in vitro model of glutamate-induced neuronal excitotoxicity using SH-SY5Y cells was optimized. The impact of CSE on glutamate-impaired cell viability, brain-derived neurotrophic factor release, CB1 protein expression, and ERK levels was evaluated. The involvement of CB1 modulation was verified by the cotreatment with the CB1 antagonist AM4113. CSE was able to significantly protect SH-SY5Y from glutamate-impaired cell viability, and to counteract the changes in brain-derived neurotrophic factor levels, with a mechanism of action involving ERK modulation. Moreover, CSE completely reversed the reduction of CB1 receptor expression induced by glutamate, and the presence of the CB1 antagonist AM4113 reduced CSE effectiveness, suggesting that CBr play a role in the modulation of neuronal excitotoxicity. This work demonstrated the in vitro effectiveness of CSE as a neuroprotective agent, proposing the whole cannabis phytocomplex as a more effective strategy, compared to its main constituents alone, and suggested further investigations by using more complex cell models before moving to in vivo studies.


Assuntos
Canabidiol , Cannabis , Neuroblastoma , Fármacos Neuroprotetores , Humanos , Canabidiol/farmacologia , Fármacos Neuroprotetores/farmacologia , Fator Neurotrófico Derivado do Encéfalo , Estrutura Molecular , Ácido Glutâmico , Extratos Vegetais/farmacologia
14.
J Pharm Biomed Anal ; 220: 114969, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-35961210

RESUMO

Plant cell culture is a biotechnology cultivation method that permit to cultivate plants in a short period of time and to obtain extracts with a high degree of standardization and high safety profile. The aim of our study was to evaluate the anti-inflammatory and neuroprotective activity of a standardized Melissa officinalis L. phytocomplex extract (MD) obtained with an in vitro plant cell culture. The MD has been chemically characterized and the content of total polyphenols was 5.17 ± 0.1 % w/w, with a content of rosmarinic acid (RA), its main constituent, of 4.02 ± 0.1 % w/w. MD was tested in an in vitro model of neuroinflammation, in which microglia cells (BV2) were stimulated with Lipopolysaccharides (LPS; 250 ng/mL) for 24 h and its pharmacological activity was compared with that of RA. MD (10 µg/mL) and RA (0.4 µg/mL) reduced pro-inflammatory factors (NF-kB, HDAC, IL-1ß) in LPS-stimulated BV2 cells and counteracted the toxic effect produced by activated microglia medium on neuronal cells. This work shows the efficacy of MD on reducing microglia-mediated neuroinflammation and promoting neuroprotection, highlighting the innovative use of in vitro plant cell cultures to obtain contaminant-free extracts endowed with marked activity and improved quali-quantitative ratio in the constituents' content.


Assuntos
Melissa , Microglia , Anti-Inflamatórios/farmacologia , Cinamatos , Depsídeos , Lipopolissacarídeos/toxicidade , NF-kappa B , Doenças Neuroinflamatórias , Extratos Vegetais/farmacologia
15.
Biomedicines ; 10(7)2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35884774

RESUMO

The worldwide incidence of neuropathic pain is around 7-8% and is associated with significant and disabling comorbidities (sleep disturbances, depression, anxiety). It is now known that cellular ageing of microglia contributes to neurodegenerative diseases, mood disorders, and, even if with less evidence, chronic pain. The aim of this work was to investigate in vitro and in vivo the senolytic activity of rosmarinic acid (RA) to be exploited for the management of NP symptoms. BV2 cells were stimulated with LPS 500 ng/mL for 24 h. Treatment with RA 1 µM improved cell viability and reduced IL-1ß release leading to an attenuation of neuroinflammation. We then moved on to test the efficacy of RA in reducing microglial senescence. In our model, BV2 cells were stimulated with LPS 500 ng/mL every 72 h for 4 h/day, over a period of 10 days. RA 1 µM reduced the expression of the ß-galactosidase enzyme, reduced the release of senescence-associated secretory phenotype (SASP) factors, increased cell viability, and reduced the presence of nuclear foci of senescence (SAHF), well-known cellular senescence markers. In the Spared Nerve Injury (SNI) model, 28 days from surgery, repeated oral administration of RA 5 mg/kg reduced hyperalgesia and NP-associated symptoms, such as anxiety and depression. A reduction of senescence markers was detected on both hippocampal and spinal samples of SNI-treated mice. This study represents a starting point for investigating the role of microglial senescence as a possible pharmacological target in controlling symptoms related to the more advanced stages of peripheral neuropathy.

16.
Neurotherapeutics ; 19(5): 1634-1648, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35501470

RESUMO

Despite the effort on developing new treatments, therapy for neuropathic pain is still a clinical challenge and combination therapy regimes of two or more drugs are often needed to improve efficacy. Accumulating evidence shows an altered expression and activity of histone acetylation enzymes in chronic pain conditions and restoration of these aberrant epigenetic modifications promotes pain-relieving activity. Recent studies showed a synergistic activity in neuropathic pain models by combination of histone deacetylases (HDACs) and bromodomain and extra-terminal domain (BET) inhibitors. On these premises, the present study investigated the pharmacological profile of new dual HDAC/BRD4 inhibitors, named SUM52 and SUM35, in the spared nerve injury (SNI) model in mice as innovative strategy to simultaneously inhibit HDACs and BETs. Intranasal administration of SUM52 and SUM35 attenuated thermal and mechanical hypersensitivity in the absence of locomotor side effects. Both dual inhibitors showed a preferential interaction with BRD4-BD2 domain, and SUM52 resulted the most active compound. SUM52 reduced microglia-mediated spinal neuroinflammation in spinal cord sections of SNI mice as showed by reduction of IBA1 immunostaining, inducible nitric oxide synthase (iNOS) expression, p65 nuclear factor-κB (NF-κB) and p38 MAPK over-phosphorylation. A robust decrease of the spinal proinflammatory cytokines content (IL-6, IL-1ß) was also observed after SUM52 treatment. Present results, showing the pain-relieving activity of HDAC/BRD4 dual inhibitors, indicate that the simultaneous modulation of BET and HDAC activity by a single molecule acting as multi-target agent might represent a promise for neuropathic pain relief.


Assuntos
Microglia , Neuralgia , Camundongos , Animais , Microglia/metabolismo , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Nucleares/farmacologia , Proteínas Nucleares/uso terapêutico , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Interleucina-6/metabolismo , Histonas/metabolismo , Fatores de Transcrição , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Medula Espinal , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/uso terapêutico , Citocinas/metabolismo , Histona Desacetilases/metabolismo , Histona Desacetilases/farmacologia , Histona Desacetilases/uso terapêutico
17.
J Ethnopharmacol ; 294: 115362, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35551977

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Ylang-ylang essential oil (YEO), obtained from the flowers of the tropical tree Cananga odorata (Lam.) Hook. f. & Thomson (family Annonaceae), has been largely used in the traditional medicine with many uses, including anxiety and altered neuronal states. Neuropathic pain is a chronic pain condition with a high incidence of comorbidities, such as anxiety, depression, and other mood disorders, that drastically affect the patient's quality of life. The currently available drugs used for the management of neuropathic pain are inadequate due to poor efficacy and tolerability, highlighting the medicinal need of a better pharmacotherapy. Several clinical studies have reported that massage or inhalation with selected essentials oils reduces symptoms associated to pain and anxiety. AIM OF THE STUDY: The aim of this study was to investigate the analgesic properties of YEO and its efficacy in reducing neuropathy-associated mood alterations. MATERIALS AND METHODS: The analgesic properties were tested in the spared nerve injury (SNI) model using male mice. Anxiolytic, antidepressant, and locomotor properties were also evaluated using behavioural tests. Finally, the YEO mechanism of action was investigated in the spinal cord and hippocampus of neuropathic mice. RESULTS: Oral administration of YEO (30 mg/kg) reduced SNI-induced neuropathic pain and ameliorates pain-related anxiety symptoms that appeared 28 days after surgery. YEO reduced the expression of MAPKs, NOS2, p-p65, markers of neuroinflammation, and promoted normalizing effect on neurotrophin levels (BDNF). CONCLUSIONS: YEO induced neuropathic pain relief and ameliorated pain-associated anxiety, representing an interesting candidate for the management of neuropathic pain conditions and pain-related comorbidities.


Assuntos
Cananga , Neuralgia , Óleos Voláteis , Animais , Ansiedade/tratamento farmacológico , Ansiedade/metabolismo , Cananga/metabolismo , Masculino , Camundongos , Neuralgia/tratamento farmacológico , Óleos Voláteis/metabolismo , Óleos Voláteis/farmacologia , Óleos Voláteis/uso terapêutico , Óleos de Plantas/farmacologia , Qualidade de Vida
18.
Phytother Res ; 36(5): 2246-2263, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35393641

RESUMO

Cannabis sativa L. is increasingly emerging for its protective role in modulating neuroinflammation, a complex process orchestrated among others by microglia, the resident immune cells of the central nervous system. Phytocannabinoids, especially cannabidiol (CBD), terpenes, and other constituents trigger several upstream and downstream microglial intracellular pathways. Here, we investigated the molecular mechanisms of a CBD- and terpenes-enriched C. sativa extract (CSE) in an in vitro model of neuroinflammation. We evaluated the effect of CSE on the inflammatory response induced by exposure to lipopolysaccharide (LPS) in BV-2 microglial cells, compared with CBD and ß-caryophyllene (CAR), CB2 receptors (CB2r) inverse and full agonist, respectively. The LPS-induced upregulation of the pro-inflammatory cytokines IL-1ß, IL-6, and TNF-α was significantly attenuated by CSE and only partially by CBD, whereas CAR was ineffective. In BV-2 cells, these anti-inflammatory effects exerted by CSE phytocomplex were only partially dependent on CB2r modulation and they were mediated by the regulation of enzymes responsible for the endocannabinoids metabolism, by the inhibition of reactive oxygen species release and the modulation of JNK/p38 cascade with consequent NF-κB p65 nuclear translocation suppression. Our data suggest that C. sativa phytocomplex and its multitarget mechanism could represent a novel therapeutic strategy for neuroinflammatory-related diseases.


Assuntos
Canabidiol , Cannabis , Canabidiol/farmacologia , Canabidiol/uso terapêutico , Citocinas/metabolismo , Endocanabinoides/farmacologia , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Microglia , NF-kappa B/metabolismo , Receptor CB2 de Canabinoide/metabolismo
19.
Int J Mol Sci ; 22(19)2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34638733

RESUMO

The importance of precise co- and post-transcriptional processing of RNA in the regulation of gene expression has become increasingly clear. RNA-binding proteins (RBPs) are a class of proteins that bind single- or double-chain RNA, with different affinities and selectivity, thus regulating the various functions of RNA and the fate of the cells themselves. ELAV (embryonic lethal/abnormal visual system)/Hu proteins represent an important family of RBPs and play a key role in the fate of newly transcribed mRNA. ELAV proteins bind AU-rich element (ARE)-containing transcripts, which are usually present on the mRNA of proteins such as cytokines, growth factors, and other proteins involved in neuronal differentiation and maintenance. In this review, we focused on a member of ELAV/Hu proteins, HuR, and its role in the development of neurodegenerative disorders, with a particular focus on demyelinating diseases.


Assuntos
Esclerose Amiotrófica Lateral , Proteína Semelhante a ELAV 1 , Esclerose Múltipla , Atrofia Muscular Espinal , Esclerose Amiotrófica Lateral/genética , Esclerose Amiotrófica Lateral/metabolismo , Esclerose Amiotrófica Lateral/terapia , Animais , Diferenciação Celular/genética , Citocinas/genética , Citocinas/metabolismo , Proteína Semelhante a ELAV 1/genética , Proteína Semelhante a ELAV 1/metabolismo , Humanos , Esclerose Múltipla/genética , Esclerose Múltipla/metabolismo , Esclerose Múltipla/terapia , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/terapia , Neurônios/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
20.
Pharmacol Res ; 173: 105901, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34547384

RESUMO

Despite the intense research on developing new therapies for neuropathic pain states, available treatments have limited efficacy and unfavorable safety profiles. Epigenetic alterations have a great influence on the development of cancer and neurological diseases, as well as neuropathic pain. Histone acetylation has prevailed as one of the well investigated epigenetic modifications in these diseases. Altered spinal activity of histone deacetylase (HDAC) and Bromo and Extra terminal domain (BET) have been described in neuropathic pain models and restoration of these aberrant epigenetic modifications showed pain-relieving activity. Over the last decades HDACs and BETs have been the focus of drug discovery studies, leading to the development of numerous small-molecule inhibitors. Clinical trials to evaluate their anticancer activity showed good efficacy but raised toxicity concerns that limited translation to the clinic. To maximize activity and minimize toxicity, these compounds can be applied in combination of sub-maximal doses to produce additive or synergistic interactions (combination therapy). Recently, of particular interest, dual BET/HDAC inhibitors (multi-target drugs) have been developed to assure simultaneous modulation of BET and HDAC activity by a single molecule. This review will summarize the most recent advances with these strategies, describing advantages and limitations of single drug treatment vs combination regimens. This review will also provide a focus on dual BET/HDAC drug discovery investigations as future therapeutic opportunity for human therapy of neuropathic pain.


Assuntos
Analgésicos não Narcóticos/uso terapêutico , Inibidores de Histona Desacetilases/uso terapêutico , Neuralgia/tratamento farmacológico , Proteínas/antagonistas & inibidores , Acetilação , Animais , Quimioterapia Combinada , Epigênese Genética , Histonas/metabolismo , Humanos , Neuralgia/genética , Neuralgia/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...